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1 Department of Computational Methods in Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
2 Institut für Physik, Technische Universität, 09107 Chemnitz, Germany

Received 17 August 1998

Abstract. To investigate the influence of electronic interaction on the metal-insulator transition (MIT), we
consider the Aubry-André (or Harper) model which describes a quasiperiodic one-dimensional quantum
system of non-interacting electrons and exhibits an MIT. For a two-particle system, we study the effect
of a Hubbard interaction on the transition by means of the transfer-matrix method and finite-size scaling.
In agreement with previous studies we find that the interaction localizes some states in the otherwise
metallic phase of the system. Nevertheless, the MIT remains unaffected by the interaction. For a long-
range interaction, many more states become localized for sufficiently large interaction strength and the
MIT appears to shift towards smaller quasiperiodic potential strength.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.27.+a Strongly correlated
electron systems; heavy fermions – 72.15.Rn Quantum localization – 71.23.Ft Quasicrystals

1 Introduction

The physics of the metal-insulator transition (MIT) con-
tinues to be at the center of current research activities. For
two decades it has been known from the scaling hypoth-
esis of localization [1] that generically a disorder-driven
MIT [2] in a free electron system only occurs in more
than two spatial dimensions, whereas in one or two di-
mensions an arbitrarily small disorder will localize the
electronic wave functions. The relevance of many-particle
interactions for the MIT is much less understood [3,4].
Here we consider the perhaps simplest tractable model of
an interacting system at the MIT. Namely, we study the
case of just two interacting particles (TIP) in a particular
one-dimensional (1D) quasiperiodic (QP) potential. For a
single particle (SP) this QP model exhibits an MIT as a
function of the non-random QP potential strength.

The problem of TIP in a 1D random potential, where
the wave functions are always localized such that there
is no MIT, has already been studied in much detail
[5–13]. It was argued that a Hubbard onsite interaction U
dramatically reduces the localization of TIP pair states in
comparison with non-interacting and unpaired particles.
In particular, Shepelyansky [5,6] proposed an enhance-
ment of the TIP localization length λ2 independent of the
statistics of the particles and of the sign of the interaction
such that

λ2(U) ≈ U2λ
κ
1
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in the band center with κ = 2. Here, λ1 is the SP local-
ization length in 1D [14] and U is given in units of the
nearest-neighbor hopping strength.

Microscopic support for the delocalization was given
afterwards by Frahm et al. [8], who observed a behav-
ior λ2 ∼ λ1.65

1 in a numerical investigation employing
the transfer-matrix method (TMM). Other direct numer-
ical approaches to the TIP problem have been based on
the time evolution of wave packets [5,15], exact diago-
nalization [10], Green function approaches [9,12,16], and
TMM [11,17]. In these investigations an enhancement of
λ2 compared to λ1 has usually been found, but the quan-
titative results tend to differ both from the analytical pre-
diction (1), and from each other.

Two of us [11] recently studied the TIP problem by
TMM but at larger system sizes M than reference [8] and
found that (i) the enhancement λ2/λ1 decreases with in-
creasing M , (ii) the behavior of λ2 for U = 0 is equal to λ1

in the limit M →∞ only, and (iii) for U 6= 0 the enhance-
ment λ2/λ1 also vanishes completely in this limit. This
raises serious questions about the validity of the TMM
approach to TIP, and in fact it has been argued very re-
cently [18] that the TMM approach of references [8,11]
may systematically underestimate the localization length
of a pair state, since it automatically measures a mix-
ture of localization lengths originating also from unpaired
states. Thus in this work, we will use the TIP-TMM not
as a tool to extract information about the pair states only,
but rather aim at describing the general influence of the
presence of one particle onto the transport properties of
the other.
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At present, it seems well-established by Green function
methods [9,12,16] that an enhancement λ2 > λ1 exists, al-
though the validity of equation (1) is still under debate:
the values of the exponent κ obtained by numerical meth-
ods [5,8–12,15–17] range from 1 to 2. In spite of these nu-
merical differences, we nevertheless believe that the TIP
approach can give meaningful insight into the interplay
of disorder and interaction [16]. In particular, the effects
of interaction on the disorder-driven Anderson transition
should be quite interesting already for TIP. However, as
mentioned above, the disorder-driven MIT requires more
than two spatial dimensions and so the numerical efforts
are close to being prohibitive when including interactions.

Fortunately, the QP — and thus fully deterministic —
Aubry-André (AA) model [19] exhibits an MIT even in
1D, in dependence on the strength of the quasiperiodic
potential. This model is closely related to the problem of
a SP on a 2D lattice in a magnetic field in which con-
text it is also known as the Harper model [20]. At the
MIT, the spectrum exhibits the famous Hofstadter butter-
fly shape [21], and the spectral and localization properties
have been studied in great detail [22]. In the mathematical
literature, the same model is also known and studied as
the almost-Mathieu equation [23].

For this 1D model, we can use the TIP approach in a
straightforward way in order to investigate the effect of the
interaction on the transition. Previous studies based on
perturbative expansions in U and numerical computations
of participation numbers in the AA model [24] concluded
that interaction can lead to the appearance of localized
states in the metallic regime for TIP. However, although
participation numbers are a useful tool for characterizing
localization properties of states, they may give ambiguous
results: in some cases, states which are extended or criti-
cal may appear to be more localized and vice versa [25].
Moreover, for interacting particles the generalization of
localization criteria like the participation number is not
straightforward [26]. Thus in this work we concentrate on
direct calculations of the TIP localization length in the
AA model using the TMM for finite system sizes. In ad-
dition to the onsite interaction, we also consider a long-
range interaction. Employing the finite-size-scaling (FSS)
approach [27], we then construct scaling curves from which
we deduce the localization properties of the infinite sys-
tem. We find that within the accuracy of our results, the
critical behavior is not affected by the interactions. But
it seems that the long-range interaction shifts the critical
QP potential strengths towards smaller values, thus giving
a tendency towards localization.

The paper is organized as follows. In Section 2, we de-
fine the TIP version of the AA model and introduce our
notations. Section 3 reviews the power-series variant of
the TMM, and the concepts of FSS. In Section 4 we ex-
plain the use of a phase-shift parameter in the QP poten-
tial for reducing statistical fluctuations in the localization
length data. Results obtained from FSS of the localization
lengths for Hubbard and long-range interactions at energy
E = 0 are presented in Section 5. In Section 6, we show
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Fig. 1. Localization length λ1 for the SP Aubry-André model
as a function of QP potential strength µ for E = 0 and β =

√
2

with system size increasing from bottom to top.

the localization properties of all states of the spectrum.
We summarize and conclude in Section 7.

2 The TIP version of the Aubry-André model

The Schrödinger equation for the SP-AA model is given
as

φn+1 = (E − µn)φn − φn−1. (2)

Here φn is a SP wave function, µn ≡ 2µ cos(αn + β) is
the QP-AA onsite potential of strength µ with α/2π an
irrational number, which we have chosen as the inverse
of the golden mean α/2π = (

√
5 − 1)/2, and β is an

arbitrary phase shift. We remark that α/2π may be ap-
proximated by the ratio of successive Fibonacci numbers
1, 2, 3, 5, 8, 13, . . . In Figure 1 we show typical data for the
SP localization length λ1 obtained by TMM for various
system sizes given by some of the Fibonacci numbers [28].
In agreement with previous studies [19], this figure sug-
gests already that the MIT occurs at µ = 1. Of course,
further analysis like FSS would be necessary for a com-
prehensive study of this MIT. Here we note that in con-
tradistinction to the MIT in the usual Anderson model
with onsite random potential disorder, in the AA model
all states are either extended (µ < 1), critical (µ = 1), or
localized (µ > 1), and thus no mobility edge, i.e., no MIT
in dependence on energy exists.

In principle, there are many possibilities to extend the
SP Schrödinger equation to TIP. In order to be most com-
patible with the TIP approach of Shepelyansky [5], we will
consider a TIP Hamiltonian with an additional QP onsite
potential on a chain of length M given as

H =
M∑
n=1

(c†n+1cn + h.c.) +
M∑
n=1

M∑
m=1

Un,mc
†
ncnc

†
mcm

+
M∑
n=1

µnc
†
ncn (3)
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where c†n and cn are the creation and annihilation opera-
tors for the electron at site n and we assume that the TIP
have different spins. Un,m denotes the interaction between
particles: Un,m = Uδnm for Hubbard onsite interaction or
Un,m = U/(|n−m|+ 1) for long-range interaction.

3 The transfer-matrix approach to TIP

The TIP Schrödinger equation reads

ψn+1,m = [E − Un,m − µn − µm]ψnm

− ψn,m+1 − ψn,m−1 − ψn−1,m, (4)

with ψn,m a TIP wave function which at U = 0 may be
written as a product of SP wave functions φn and φm. We
can rewrite equation (4) in the TMM form similar to a 2D
Anderson model on an M ×M lattice as (ψn+1, ψn)T =
Tn(ψn, ψn−1)T with the symplectic transfer matrix

Tn =

(
E1− χn −H⊥ −1

1 0

)
, (5)

describing the evolution of the wave vectors for the
first (n) particle (corresponding to the longitudinal di-
rection in the 2D SP TMM approach). Here ψn =
(ψn,1, . . . , ψn,m, . . . , ψn,M) is the wave vector of slice n,
H⊥ is the SP hopping term for the second (m) particle
(corresponding to the transverse direction) and (χn)i,m =
[µn + µm + Un,m]δi,m codes the QP potential and the in-
teraction [8]. Note that in this approach the symmetry
of the wave function remains unspecified and we cannot
distinguish between boson and fermion statistics.

The evolution of the state is determined by the matrix

product τN =
∏N
n=1 Tn and we have(
ψN+1

ψN

)
= τN

(
ψ1

ψ0

)
. (6)

Usually, one studies a quasi-1D system of size M×N with
M � N . However, in the present problem, both directions
are restricted to n,m ≤M and iterating equation (6) only
N = M times will not give convergence. Frahm et al. [8]
have solved this problem in their TMM study by exploit-

ing the Hermiticity of the product matrix QM = τ†MτM :

Continuing the iteration (6) with τ†M , then with τM , and
so on, until convergence is achieved, yields the eigenvalues
exp[−2Mγi] of QM . This is the well-known power method
for the diagonalization of Hermitian matrices [29]. The
smallest positive Lyapunov exponent γmin determines the
slowest possible decay of the wave function and thus the
largest localization length λmax = 1/γmin for given en-
ergy E and phase shift β. We now define the localiza-
tion length λ of the two-particle wave function ψn,m as
λmax of the transfer matrix problem (6). As specified in
reference [18], λ then measures the localization length of
the first particle in the presence of the second. Thus as
outlined in the introduction, we do not restrict our at-
tention to the two-particle states, but rather study the
influence of interaction for all states.
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Fig. 2. Inverse of the localization length λ1 for the SP Aubry-
André model as a function of phase shift β for E = 0 and M =
13. Different symbols indicate QP potential strength µ = 2
(∇), 1.5 (∗), 1 (2), and 0.5 (4).

According to the one-parameter scaling hypothesis [1],
which has been verified with very high accuracy for ran-
dom potentials µn [27], the reduced localization lengths
λ(M)/M scale onto a single scaling curve, i.e.,

λ(M)/M = f(ξ/M). (7)

For the AA model considered here, we are not aware of
any previous FSS study. Indeed, it is not a priori obvious
that one-parameter FSS should be valid for the AA model.
At least for a given single phase shift β, it is clear from
Figure 1 that we need to go to rather large system sizes
in order to suppress the fluctuations around µ = 1 and
to be able to use the FSS approach. However, as we will
explain in the next section, we may use different values of
β as being analogous to the different disorder realizations
in the Anderson model. As usual, we may then determine
the finite-size-scaling (FSS) function f and the values of
the scaling parameter ξ by a least-squares fit [27].

4 Averaging over different β

The localization length calculated for given system size
and QP potential µ depends significantly on the β value
as shown for SP in Figure 2. This means that the decay
length varies depending on the phase shift of the potential
along the chain. One may expect that the chain length M
will also influence the results by changing relative phases
of the potential at the ends.

Therefore we have restricted our calculations to the
chain lengths given by the Fibonacci numbers mentioned
in Section 2, because for our choice of α, this assures that
the phase difference of the potential at both ends of the
chain will be similar, i.e., approaching zero with increas-
ing M . We note that our numerical results presented in
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Fig. 3. Localization length λ1 for the SP Aubry-André model
as a function of QP potential strength µ for E = 0, averaged
over 1000 β-values. The system size is increasing from bottom
to top. Note the MIT at µ = 1.

the next section do not change significantly, when we al-
ternatively use the rational approximants for α/2π instead
of the irrational number defined in Section 2.

Still, the dependence of λ1 on the system size M for
a given value of β shows much structure which makes
simple extrapolations towards the infinite system or FSS
impossible. This dependence is also responsible for fluc-
tuations of the SP λ1 close to µ = 1 which are visible
as peaks in Figure 1 for small Fibonacci number M [28].
Only for very large M , the fluctuations become small. On
the other hand, finite systems with different values of β
may be viewed as different parts cut out of the infinite QP
model. This then suggests that we may reduce the fluc-
tuation effects by averaging over many such small pieces
or, equivalently, many different values of randomly chosen
β. Thus different β values are analogous to different dis-
order configurations used in the Anderson Hamiltonian.
Figure 3 presents such an average over 1000 β values for
the SP localization length. As expected, the fluctuations
visible in Figure 1 disappear even for small systems and
extrapolations to large M and FSS are now possible.

5 Localization properties at E = 0

We now turn our attention to the problem of TIP and
study the effects of interaction on the localization lengths
obtained by TMM, restricting ourselves to E = 0. To this
end, we have computed the localization lengths for 6 sys-
tem sizes M = 8, 13, 21, 34, 55, and 89, for 80 QP potential
strengths µ ranging from 0.56 to 4, and for 6 interaction
strengths U = 0, 0.5, 1, 1.5, 2, and 10, with onsite and with
long-range interaction. Typically, for each such triplet of
parameters (M,µ,U) we averaged over at least 1000 dif-
ferent β realizations. We note that as for the case of TIP
in a random potential [16], attractive and repulsive inter-
action strengths give the same results at E = 0 and we
can thus restrict ourselves to U ≥ 0 here.
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5.1 Hubbard interaction

Figures 4 and 5 show the FSS results for β-averaged data
at energy E = 0 for onsite interaction strength U = 0
and U = 1. As can be seen, the coalescence of data for
various values of µ is not perfect and in fact certainly
worse than, e.g., for onsite random disorder [27]. This is
especially visible on the extended side µ < 1. Nevertheless,
the figures clearly show the existence of two branches of
the scaling curve as in the 3D Anderson model [27]. This
indicates, in agreement with the above considerations for
the SP-AA model, the presence of localized states for µ >
1 and extended states for µ < 1. The MIT appears at a
critical QP potential µc which is close to 1. The values
determined from the FSS procedure are µc = 1.01± 0.02
for U = 0 and µc = 1.04± 0.04 for U = 1. Corresponding
FSS plots for U = 0.5, 1.5, 2 and 10 all consistently give
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Fig. 6. Scaling parameter ξ as a function of QP potential
strength µ for U = 0 (◦), for onsite interaction with U = 1
(2), and for long-range interaction with U = 1 (3).

µc ≈ 1. We attribute the small deviations from the critical
value µc = 1 of the SP case to the fluctuations in the data.

Thus the MIT does not get shifted by the Hubbard
interaction and the transport properties of one particle in
the presence of another remain unchanged. On the metal-
lic side of the transition (µ < 1) this is immediately clear:
the interaction is supposed to localize O(M) TIP states
out of the O(M2) states in the unsymmetrized Hilbert
space [24]. The TMM inherently measures the longest lo-
calization length and thus simply misses the few shorter
localization lengths induced by the interaction. On the lo-
calized side, however, we could expect the interaction to
delocalize these TIP states which might be visible even
by TMM. However, as discussed in Sections 1 and 3, this
effect is not present in the TIP-TMM or at least too small
to be visible [18].

The scaling parameters ξ obtained by FSS according
to equation (7) are expected to diverge at the transition
as ξ ∼ |µ−µc|−ν with the critical exponent ν. In Figure 6
we show the dependence of ξ on the QP strength µ. The
divergence at µc ≈ 1 is clearly visible. A power-law fit
gives ν = 0.8± 0.2 both for U = 0 and U = 1. The large
error of the estimate is due to the fluctuations in the data
near the critical point [27]. Furthermore, in the localized
regime of the SP-AA model is has been shown that [19]

λ1 ∼ 1/ ln(1 + |µ− µc|), (8)

which yields ν = 1 by expansion around µc. In order to
check whether this equation holds also for TIP we ex-
amined the dependence of 1/ξ on ln (1 + |µ− µc|). The
results are displayed in Figure 7. The slope of the best fit
line is 1.00 ± 0.02 for U = 0 and 1.01 ± 0.03 for U = 1.
This suggests that onsite interaction does not change the
critical behavior at the MIT.

0 1 2 3
ln(1+|µ−µc|)

0.0

0.5

1.0

1.5

1/
ξ

Fig. 7. Inverse scaling parameter 1/ξ as a function of QP po-
tential strength µ as in equation (8) for U = 0 (◦), for Hubbard
interaction with U = 1 (2), and for long-range interaction with
U = 1 (3), consecutively shifted by 1 for clarity. The lines in-
dicate linear regression fits to the data in the localized regime.
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5.2 Long-range interaction

We now consider the long-range interaction defined in
Section 2. The FSS plot for U = 1 in Figure 8 is qual-
itatively the same as for Hubbard interaction. We find lo-
calized states for µ� 1 and extended states for µ� 1. In
Figure 6, we have included the variation of the scaling
parameter ξ with µ for this case. The divergence of ξ oc-
curs at µc = 0.92 ± 0.04 indicating that the MIT has
been shifted towards smaller values of the QP potential
strength µ. FSS plots for U = 0.5, 1.5 and 2 suggest that
this shift becomes somewhat more pronounced for larger
U , decreasing to µc ≈ 0.9 for U = 2.

This behavior may be rationalized by keeping in mind
that for a long-range interaction, contrary to the case of
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Hubbard interaction, all states will eventually feel the
interaction-induced tendency towards localization on the
extended side of the MIT, as we will show for small sys-
tems in the next section. Thus even the most delocalized
states at E = 0 will become more localized for suffi-
ciently large U . However, in order to answer the ques-
tion whether long-range interaction indeed shifts the MIT
towards weaker QP potential strength, additional calcula-
tions with still higher accuracy would be necessary. These
require, however, a prohibitive numerical effort when us-
ing the present power-series method.

The critical exponent for U = 1 calculated as in Sec-
tion 5.1 is ν = 1.0±0.2 and the respective slope in Figure 7
is 0.97±0.03. These values are compatible with our results
for onsite interaction within the error limits. Therefore,
the critical behavior is similar to the SP case and onsite
interaction.

6 Energy dependence of the localization
properties

In the previous section, we have rationalized the persis-
tence of the MIT in the presence of interactions by as-
suming that on the extended side the onsite interaction
localizes a small number of states leaving the rest unaf-
fected. To further examine this effect with TMM we cal-
culate the dependence of λ on the energy E for a single
value of β and a small system size.

6.1 Hubbard interaction

Figure 9 presents results for the inverse localization length
λ−1 obtained by TMM on the metallic side. Also shown
are the values of the eigenenergies Ei. The TMM accu-
rately shows that transport at energies not corresponding
to eigenstates is suppressed, because the incoming wave
function decays exponentially. On the other hand, λ−1(E)
decreases rapidly towards zero when E is approaching an
eigenvalue Ei as shown in Figure 9. This has also been ob-
served in the SP case [19]. For U = 0, we find a few cases
where λ−1 remains large even at the energy of an eigen-
state. From an analysis of the corresponding wave func-
tions, we can identify these states with boundary states
where the particles are localized close to the ends of the
finite chains.

The comparison of the plots for U = 0 and U = 1
shows that, while the energy of most states changes only
slightly, there are a few states which move to significantly
larger energies. Their localization lengths are apparently
much shorter. The calculation of β-averaged decay lengths
for different M shows that states at the verge of the spec-
trum at E = 4.6 remain extended for U = 1 while the
states at E = 5.3 are localized. There are also some states
within the main part of the spectrum which shift to higher
energies. Some of them are visible in Figure 9 as they enter
the energy gaps. For sufficiently strong interaction U = 8
there are 13 localized states which split off the remaining
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Fig. 9. Inverse localization length as a function of energy for
a QP potential strength µ = 0.9 at β =

√
2, M = 13 for

U = 0 and for two Hubbard interaction strengths U . Plots for
different U are vertically shifted for clarity. The eigenenergies
are indicated by (+).

spectrum. The calculations for other system sizes support
the conclusion that the interaction localizes M out of M2

states for system size M . These states correspond to both
particles residing on the same site and interacting via the
Hubbard U . The other states remain extended and do not
change their energy significantly.

In the localized regime (µ > 1) the interaction has
a similar effect, i.e., for sufficiently large U it shifts M
states above the main part of the spectrum and increases
their localization; the remaining unshifted states also stay
localized. These results are in agreement with those of
reference [24], when we keep in mind that our numerical
method does not allow us to see accurately an eventual
delocalization at intermediate U .

6.2 Long-range interaction

Figure 10 presents respective results obtained for long-
range interaction. Again, the interaction shifts states to
higher energies and shortens their decay lengths. However,
as the particles feel the interaction at any separation, all
states change their energy in agreement with Section 5.2.
This is especially pronounced in Figure 10 for U = 10.
The most prominent shift is the change at the high energy
part of the spectrum. For extremely large interaction, e.g.
U = 1000, the spectrum splits into M groups of states
reflecting the number of sites at which two particles may
reside at given separation, i.e., for system size M there
are M states for separation n−m = 0, and 2M − 2 states
for separation |n−m| = 1, and so on.
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Fig. 10. Inverse localization length as a function of energy
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U = 0 and two long-range interaction strengths U . Plots for
different U are vertically shifted for clarity. The eigenenergies
are indicated by (+).

7 Conclusions

We have demonstrated that it is possible to perform FSS
for a system with two interacting particles in a 1D QP
Aubry-André (or Harper) potential. We find two branches
in the FSS curves which correspond to localized and ex-
tended behavior. The roughness of the FSS plot is prob-
ably an effect of small system sizes and insufficient aver-
aging and should disappear for larger systems, requiring,
however, much larger computational effort. On the other
hand it may be that one-parameter scaling is not strictly
valid in this QP model as evidenced by the results for the
even chain lengths M = 34 and 144 [28]. Nevertheless,
even in this case the presence of localized and extended
branches as in Figures 4, 5 and 8 indicates the existence
of an MIT.

The FSS results for energy E = 0 show that the MIT
exists in these TIP systems both for the non-interacting
and the interacting case. The transition point µc does not
depend on the Hubbard interaction strength U and is lo-
cated at QP potential strength µc ≈ 1. However, a large
enough long-range interaction shifts µc towards smaller
QP strength. Within the numerical accuracy of our data,
the critical behaviour of the localization length is not af-
fected by the Hubbard and the long-range interaction.

The dependence of the decay length on the energy as
calculated by TMM confirms the results obtained by other
methods [19] that a large enough interaction localizes pair
states simultaneously increasing their energy and leaves
the rest of the states almost unaffected. We wish to point
out that the situation will be somewhat different for a
system at finite filling due to the presence of the filled
Fermi sea. This has been shown, e.g., for the case of TIP
in a random potential in reference [30].

In closing we remark that our results may also be
viewed independently of the TIP problem, by noting that
the present problem of two particles in a 1D QP poten-
tial may also be seen as SP problem in a particular real-
ization of a 2D QP potential. Similar systems have been
investigated previously, e.g., in reference [31] within the
Landauer approach.
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